BAB III

METODELOGI PENELITIAN

3.1 Jenis dan Rancangan Penelitian

3.1.1 Jenis Penelitian

Penelitian ini menggunakan jenis penelitian eksperimental secara *in silico* yang mengadakan percobaan pada senyawa turunan kurkumin terhadap reseptor *Proliferating Cell Nuclear Antigen* (PCNA).

3.1.2 Rancangan Penelitian

Rancangan penelitian ini adalah eksperimetal. Dalam desain ini kelompok eksperimen dan kelompok kontrol tidak dipilih secara random. Kelompok eksperimen adalah kelompok yang mendapatkan perlakuan dan kelompok kontrol tidak mendapat perlakuan.

3.2 Populasi dan Sampel

3.2.1 Populasi Penelitian

Populasi yang akan digunakan dalam penelitian ini adalah senyawa kurkumin dan turunan kurkumin.

3.2.2 Sampel Penelitian

Sampel yang akan digunakan dalam penelitian ini adalah senyawa kurkumin dan turunannya sejumlah 12 senyawa yang didapat dari buku "*Anticancer Curcumin: Natural Analogues and Structure-Activity Relationship*" oleh Gupta dkk. Kelompok perlakuan dalam penelitian ini adalah 12 senyawa kurkumin dan turunannya, sedangkan kelompok kontrolnya adalah senyawa AOH1996.

3.3 Variabel Penelitian

Penelitian ini menggunakan variabel bebas dan variabel terikat. Berikut ini variabel yang dipilih.

Variabel bebas	: Parameter fisika kimia (Hidrofobik, Elektronik, dan Sterik)
Variabel terikat	: Hasil penambatan molekuler (Energy Bebas Gibbs)

3.4 Definisi Operasional

Tabel 3.1 Definisi Op	erasional
-----------------------	-----------

Variabel	Definisi Operasional	Alat Ukur	Skala
			Data
Parameter	Setiap senyawa uji dikumpulkan data terkait	Software	Rasio
Fisika	tiga parameter, terdiri dari Hidrofobik (Log	ChemBio	
Kimia	P, Log S), Elektronik (Etot, pKa), Sterik	Draw	
	(MR, BM)	Ultra 13.0	
	1. Hidrofobik		
	LogP (Logaritma koefsien partisi),		
	LogS (Logaritma kelarutan dalam air).		
	Sebaiknya, untuk nilai LogP tidak		
	melebihi 5, dan nilai LogS tidak kurang		
	dari -6.		
	2. Elektronik		
	Etot (Total energi elektron),		
	pKa (Negatif logaritma tetapan ionisasi).		
	Sebaiknya, nilai pKa berada dikisaran 6-		
	8, dan E _{tot} bernilai rendah.		
	3. Sterik		
	MR (Refraksi Molar),		
	BM (Berat Molekul).		
	Sebaiknya, untuk nilai BM tidak lebih		
	dari 500, dan MR sebesar 40-130.		
Energi	Senyawa uji dilakukan penambatan	Software	Rasio
Bebas	molekuler melalui software, untuk	AutoDock	
Gibbs	mengetahui besar ikatannya dengan	Tools 1.5.7	
	reseptor. Semakin kecil hasil, semakin baik	dan	
	dan layak dianalisis HKSP. Ikatan	AutoDock	
	pembentukan kompleks yang kuat ditandai	Vina	
	dengan nilai Energi Bebas Gibbs (ΔG) yang		
	rendah, tetapan inhibisi rendah, dan		
	banyaknya jumlah interaksi ikatan hidrogen.		

	Hasil Energi Bebas terbaik, atau senyawa		
	yang dapat dipilih adalah yang memiliki		
	nilai paling mendekati nilai interaksi		
	AOH1996 dengan reseptor.		
Analisis	Data dilakukan analisis regresi linear	IBM SPSS	Rasio
Regresi	bersama dengan hasil energi interaksi untuk	Statistics	
	mengetahui parameter paling berpengaruh	27	
	terhadap substituen senyawa turunan.		
	Pemilihan persamaan HKSP terbaik		
	ditentukan dengan beberapa kriteria		
	statistik, yakni:		
	nilai r dan r ² paling mendekati satu,		
	nilai F terbesar,		
	nilai t dan s terkecil.		
	Jika koefisien korelasi bernilai positif		
	dikatakan korelasi searah, dan sebaliknya		
	jika koefisien korelasi bernilai negatif maka		
	dikatakan korelasi tidak searah. Nilai		
	koefisien korelasi terletak antara -1 hingga		
	1. Koefisien ini berarti nilai variabel X		
	tinggi, maka nilai variabel Y akan menjadi		
	rendah begitu pula sebaliknya.		
	Panduan interpretasi koefisien korelasi		
	sebagai berikut.		
	0,00-0,199: Sangat rendah		
	0,20-0,399: Rendah		
	0,40-0,599: Sedang		
	0,60-0,799: Kuat		
	0,80-1,000: Sangat Kuat		

3.5 Alat dan Bahan

3.5.1 Alat

Alat yang digunakan dalam penelitian ini adalah perangkat keras berupa: Laptop 1 dengan spesifikasi: Processor AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz, RAM 16,0 GB, System type 64-bit operating system, x64based processor. *ChemOffice trial version (ChemDraw Ultra 8.0 dan Chem3D Ultra 8.0), dan IBM SPSS Statistics 23.*

Laptop 2 dengan spesifikasi: Processor 11th Gen Intel(R) Core(TM) i3-1115G4 @ 3.00GHz, RAM 8,00 GB, System type 64-bit operating system, x64-based processor dilengkapi perangkat lunak yang digunakan berupa *AutoDock Vina, AutoDockTools1.5.7, PyMOL2.5.8, Phyton 2.7.11, Discovery Studio.*

3.5.2 Bahan

Bahan yang digunakan dalam penelitian ini adalah senyawa kurkumin dan turunannya dan struktur protein 3D *Proliferating Cell Nuclear Antigen* (PDB ID: 8GLA).

Gambar 3.1 Metabolit kurkumin (Gupta dkk., 2017)

3.6 Prosedur Kerja

3.6.1 Preparasi Ligan

Struktur senyawa uji dibuat dengan *software ChemDraw Ultra* dalam bentuk 2D dan disimpan dalam format *.cdx. Struktur diubah ke bentuk 3D dengan menggunakan *Chem3D Ultra*, dilakukan optimasi struktur sampai memiliki bentuk stabil dan energi minimal dengan langkah-langkah sebagai berikut.

- 1. Struktur 2D dimasukkan ke dalam Chem3D Ultra.
- 2. Calculations → MMFF94 → Perform MMFF94 Minimization → Run Molecular Mechanical MM2 Methods
- 3. Simpan file dalam format *mol2.

Langkah-langkah mengubah molekul ligan dengan *AutoDockTools* adalah sebagai berikut.

- 1. Struktur ligan/ senyawa uji dengan format *.pdb diimpor ke AutoDockTools.
- 2. Pulihkan gugus hidrogen yang hilang dengan cara $Edit \rightarrow Hydrogens \rightarrow Add \rightarrow Pilih All Hydrogens \rightarrow OK.$
- 3. Hilangkan gugus hidrogen non polar dengan cara *Edit*→*Hydrogens*→*Merge Non-Polar*.
- 4. Tambahkan muatan dengan cara *Edit* \rightarrow *Charges* \rightarrow *Compute Gasteiger* \rightarrow *OK*.
- 5. Beri Torsi dengan cara *Ligand* →*Torsion Tree* →*Choose Torsions* →Pastikan semua *rotatable bonds* berwarna hijau→*Done*.

- Ligand → Torsion Tree → Set number of torsions → fewest atom → atur jumlah →Dismiss.
- Simpan dengan format PDBQT dengan cara *Ligand* →*Output* →*Save as PDBQT* → *Save* dengan nama "ligan.pdbqt".

3.6.2 Preparasi Protein Reseptor

Struktur protein (PDB ID: 8GLA) diambil dari Protein Data Bank (<u>https://www.rcsb.org/</u>), lalu diubah dengan *AutoDockTools*. Data struktur PDB diubah untuk menghilangkan molekul air, menambahkan atom H, menambahkan muatan, dan menghapus ligan atau kofaktor yang tidak terkait.

Tahap-tahap pengubahan molekul enzim dengan *AutoDockTools* adalah sebagai berikut:

- Buka file struktur *Proliferating Cell Nuclear Antigen* yang diperoleh dari PDB dengan *AutoDockTools* menggunakan fitur *File→Read molecule→*pilih "protein.pdb"→open.
- 2. Edit \rightarrow Delete Water.
- Hilangkan ligan dan kofaktor dari proteinnya dengan cara memilih pada daftar residu di setiap bagian rantai protein. Setelah semua ligan dan kofaktor yang tidak perlu sudah dipilih, *Edit →Delete →Delete Selected Atom →Continue*.
- 4. Tambahkan gugus hidrogen yang hilang dengan cara $Edit \rightarrow Hydrogens \rightarrow Add \rightarrow Pilih Polar Only \rightarrow OK$.
- 5. Tambahkan muatan dengan cara *Edit* \rightarrow *Charges* \rightarrow *Add Kollman Charges* \rightarrow *OK*.
- 6. Simpan reseptor dalam format *.pdbqt dengan nama protein.pdbqt. Grid → Macromolecule → Choose → Pilih reseptornya → Select molecule → Simpan dengan nama "protein.pdbqt".

3.6.3 Penyiapan Parameter Grid

Parameter grid berisikan informasi tipe map yang akan dikomputasikan, lokasi, dan parameter pasangan energi potensial. Pada umumnya, satu map akan dihitung untuk setiap elemen pada ligan, ditambah map elektrostatik. Tahap-tahap penyipan parameter grid dengan ADT adalah sebagai berikut:

1. Buka file makromolekul dalam format *.pdbqt. *Grid→Macromolecule* →*Open→Select Protein.pdb→Select molecule→Open file* "protein.pdbqt"

- 2. Buka file ligan dengan cara *Grid*→*Set Map Types*→*Open Ligand*→Pilih "ligand.pdbqt"→*Open*.
- 3. Tentukan parameter gridbox, dengan cara Grid→Gridbox→Atur Spacing 1 Angstrom dan Atur Size x, y, dan z hingga ligand tepat berada seluruhnya di dalam box (catat secara manual nilai masing-masing size dan center dari x, y, dan z)→File→Saving Current.
- 4. Simpan file dengan cara *Grid*→*Output*→*Save GPF*→Simpan file dengan nama"*Dock.gpf*"→*Save*.

3.6.4 Penambatan Molekuler

Dalam menjalankan *AutoDock Vina*, perlu disiapkan beberapa parameter. Langkah-langkah penyiapan parameter adalah sebagai berikut:

- 1. Menyimpan data ligan dan protein dalam format *.pdbqt disimpan di dalam folder yang sama di *Documents*.
- 2. Membuat text documents yang isinya:

receptor = protein.pdbqt

ligand = ligand.pdbqt

exhaustiveness = 60

out = out.pdbqt

 $center_x = 35.255$

 $center_y = -9.248$

 $center_z = 36.23$

size_x = 30

size_y = 30

size_z = 30

Nilai masing-masing center dan size dari x, y, dan z dimasukkan dari penyimpanan parameter gridbox.

- 3. Kemudian disimpan dengan nama conf.txt di dalam folder yang sama di Documents.
- Menjalankan perintah command prompt. Alamat menyimpan bahan di documents\" Alamat menyimpan AutoDock Vina.exe" –config conf.txt –log log.txt

C:\Users\USER\OneDrive\Document\docking>"\Program Files (x86)\MGLTools-

1.5.7\Vina"\vina.exe --config conf.txt --log log.txt

3.6.5 Visualisasi Hasil Docking

Pada akhir perhitungan *AutoDock* menghasilkan *Output* berupa *score* yang menggambarkan Energi Gibbs (kcal/mol), yang dapat dilihat dalam file out.pdbqt. Beberapa hal yang perlu diperhatikan dalam mengevaluasi hasil *docking* ialah nilai afinitas. Hasil *docking* yang diambil ialah nilai Energi Gibbs terendah.

3.6.6 Analisis HKSP

Langkah-langkah analisis HKSP, dihasilkan *Output* berupa persamaan regresi linier dari parameter fisika kimia yang berpengaruh terhadap *binding affinity* senyawa inhibitor.

- 1. Buka IBM SPSS
- 2. Siapkan pengaturan data dengan cara, pilih *Variable View* lalu atur sesuai kebutuhan analisis regresi
- 3. Masukkan data setiap variabel penelitian
- 4. Pilih Analyze →Regression →Linear
- 5. Masukkan semua variabel penelitian baik variabel independent maupun dependent. Pilih OK
- 6. Muncul Output hasil Regresi Linear.

Hubungan secara kuantitatif dari nilai parameter fisikokimia dengan prediksi aktivitas dianalisis dengan model regresi linear menggunakan IBM SPSS. Persamaan terbaik dipilih berdasarkan nilai r, R², SE, F, dan .sig

3.7 Tempat dan Waktu Penelitian

Penelitian dilaksanakan di Laboratorium Komputer STIKes Panti Waluya Malang pada bulan Maret 2024 sampai selesai.

Gambar 3.2 Diagram Kerangka Kerja